
Photocurrent and photoabsorption transients in amorphous solids in the presence of optical

bias

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 10381

(http://iopscience.iop.org/0953-8984/9/47/008)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 11:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 10381–10398. Printed in the UK PII: S0953-8984(97)86332-1

Photocurrent and photoabsorption transients in amorphous
solids in the presence of optical bias

P Grygiel and W Tomaszewicz
Department of Technical Physics and Applied Mathematics, Technical University of Gdańsk,
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Abstract. An approximate treatment of the transient response of an illuminated (‘optically
biased’) amorphous semiconductor to a short light pulse is presented. The problem is
formulated in terms of Rose’s multiple-trapping model and is studied in two specific cases,
corresponding to strongly non-equilibrium and quasi-equilibrium trapped-carrier distributions.
In both approximations, the formulae describing the photocurrent and photoabsorption transients
in some characteristic time intervals are derived. The accuracy of the formulae is verified by
numerical calculations, performed for the exponential distribution of traps. The above results are
consistent with those obtained previously by other authors, particularly by Pandya and Schiff.
The given formulae make it possible to determine the trap distribution in the energy gap as well
as some trap parameters from experimental data without making any model assumptions.

1. Introduction

Investigations of photoconductivity and related phenomena provide valuable information
about the carrier transport and recombination mechanisms in amorphous semiconductors.
In the last few years, many experimental techniques have been developed for this
purpose. Among other things, the influence of auxiliary illumination (‘optical bias’) on
the photocurrent (PC) and photoabsorption (PA) transients has been extensively studied,
mainly for a-Si:H [1–6]. It has been established that the decay rate of the PC and PA
increases with increasing bias intensity.

The photoconductive properties of disordered semiconductors are commonly interpreted
in terms of a multiple-trapping (MT) model. Usually, the optical bias effects are associated
with filling of deeper traps, which reduces the trapping rate of free carriers and (for
bimolecular recombination) enhances their recombination rate [7–10]. An alternative
interpretation of these effects is given in [6, 11]. Despite these controversies, one can state
that the measurements of the transient PC and PA in the presence of additional illumination
yield valuable information on the energy distribution of traps and enable us to test the
validity of the MT model.

The most comprehensive theoretical analysis of optical bias effects was carried out by
Pandya and Schiff (PS) [9]. They obtained general solutions of the linearized MT equations,
which correspond to a small photoexcitation pulse, by means of Fourier transformation.
Next, they calculated the PC and PA transients for an exponential distribution of traps
both analytically and numerically. It was concluded that the form of the transient responses
depends mainly on the degree of carrier equilibration at the onset of recombination, as well as
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on the recombination mechanism (monomolecular or bimolecular). A simple interpretation
of the results obtained in terms of progressive carrier thermalization was also given.

In this paper a quantitative treatment of PC and PA transients with optical bias, using the
carrier thermalization concept, is presented. The MT equations are solved approximately
in two specific cases, corresponding either to strongly non-equilibrium [12, 13] or to quasi-
equilibrium trapped-carrier distributions. The latter approach is similar to that introduced in
[14, 15] and will be presented in detail elsewhere [16]. The resulting formulae for the PC
and PA are relatively simple, and make it possible to determine the trap distribution as well
as some trap parameters from experimental data. For the case of exponential distribution of
traps, the formulae reproduce all of the results obtained by PS with satisfactory accuracy,
as established by numerical calculations. The paper is mainly concerned with the case of
bimolecular carrier recombination. The MT equations are then identical to those formulated
within photoconductivity theory by Rose [17]. The case of monomolecular recombination
is considered briefly in appendix C.

2. Formulation of the problem

In the photoconductivity model considered, a wide distribution of trapping levels for majority
carriers (e.g. electrons) and a single type of recombination centre are assumed to exist in
the energy gap. The photogenerated free electrons may be temporarily captured by the traps
or may recombine with the holes captured by recombination centres. The lifetime of the
free holes is neglected. The resulting PC and PA are therefore proportional to the free-, and
trapped-electron concentrations, respectively. According to the charge neutrality condition,
the total concentration of electrons is equal to the concentration of holes in recombination
centres.

The above model of photoconductivity corresponds to the following set of equations:

d

dt
[n(t)+ nt (t)] = f (t)− brn(t)[n(t)+ nt (t)] (1)

dn′t (t, E)
dt

= bt [Nt(E)− n′t (t, E)]n(t)−
n′t (t, E)
τr(E)

(2)

nt (t) =
∫ Et

E0
t

n′t (t, E) dE (3)

where the time and energy variables are denoted byt andE, respectively,n(t) andnt (t)
are the free- and trapped-carrier densities,n′t (t, E) is the density of trapped carriers per unit
of energy andf (t) is the carrier generation rate. The meaning of the remaining notation is
as follows: bt , br : carrier capture and recombination coefficients, respectively;Nt(E): the
trap density per energy unit;τr(E) = ν−1 exp(E/kT ): the mean lifetime of trapped carriers
(ν is the frequency factor,k is the Boltzmann constant, andT the absolute temperature);
andE0

t andEt : lower and upper limits of the trap distribution (the energy is measured from
the edge of the conduction band).

It is convenient here to split each of the carrier densities and the carrier generation
rate into two terms, relating to the steady-state bias illumination and to the additional light
pulse. In the following, these terms will be indicated by the superscript ‘0’ and the symbol
‘1’, respectively. Therefore, we will writen(t) = n0 + 1n(t), nt (t) = n0

t + 1nt(t), etc.
Throughout the paper, we shall consider the case of relatively weak additional excitation,
subject to the conditions|1n(t)| � n0 and 1nt(t) � n0

t . We shall assume also that
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n0� n0
t . Then, from equations (1)–(3) one gets

d

dt
[1n(t)+1nt(t)] = −br

[
n0
t 1n(t)+ n01nt(t)

]
(4)

d1n′t (t, E)
dt

= bt [Nt(E)− n′t0(E)]1n(t)−
[
btn

0+ τ−1
r (E)

]
1n′t (t, E) (5)

1nt(t) =
∫ Et

E0
t

1n′t (t, E) dE. (6)

Since the additional light pulse, generating carriers from the time momentt = 0, is assumed
to be very short, the generation term1f (t) on the RHS of equation (4) was omitted. The
initial conditions for the above equations may then be formulated as follows:1n(0) > 0
and1n′t (0, E) = 0.

One should notice that within the approximation considered, the decay of the carrier
density1n(t) + 1nt(t) is related to two different effects, described by the terms on the
RHS of (4). The first process is the ‘monomolecular’ recombination of free carriers,
having density1n(t), at a rate proportional tobrn0

t . The second process consists in
the recombination of trapped carriers of density1nt(t), the rate of recombination being
proportional tobrn0. As will be shown later, the second effect is significant solely in the
long-time limit.

From equations (1)–(3) one also obtains the equations relating the steady-state carrier
densities to the generation ratef 0. It is sufficient here to characterize the optical bias
intensity using the value of the free-carrier densityn0. The trapped-carrier density may be
calculated from

n′t
0(E) = btn

0Nt(E)τr(E)

1+ btn0τr(E)
. (7)

Equation (5) may be integrated with respect to the time and energy variables, which, together
with equation (6) and the initial conditions, leads to

1nt(t) =
∫ t

0
8(t − t ′)1n(t ′) dt ′ (8)

where

8(t) = bt
∫ Et

E0
t

Nt (E)

1+ btn0τr(E)
exp

{− [btn0+ τ−1
r (E)

]
t
}

dE. (9)

The function8(t) determines the probability that a carrier, being free at the initial moment
(t = 0), is trapped within the time unit and stays in a trap up to the timet .

In the next section the approximate solutions of equations (4) and (8) are derived. The
accuracy of the approximate solutions is estimated by comparison with the exact numerical
results, obtained for a special case of exponential trap distribution,

Nt(E) = Ntot

kTc
exp

(
− E

kTc

)
E0
t = 0 Et = ∞ (10)

where Ntot is the total trap density andTc the characteristic temperature of the trap
distribution.
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3. Analytical solutions

3.1. Carrier thermalization

The progressive carrier thermalization in the presence of optical bias is characterized by
the positions of the demarcation levelE0(t) and the quasi-Fermi levelEf 0 in the energy
gap. These energies are defined implicitly byτr(E0) = 1.8t (the correction factor 1.8 was
introduced in [13]) andτr(Ef 0) = 1/btn0, which yields

E0(t) = kT ln(1.8νt) (11)

Ef 0 = kT ln(ν/btn
0). (12)

The energyE0(t) is the maximum trap depth for which the trapped carriers are in thermal
equilibrium with the carriers in the conduction band.

The onset of the carrier thermalization is given bytD = τr(E0
t ), while the time required

for establishing the complete carrier equilibrium equalstT = 1/btn0. In what follows, we
shall assume thattT � tD, which corresponds to the case of a wide trap distribution and
relatively low bias intensity. As was shown by PS, another important parameter is the
time of the onset of carrier recombinationtR, which will be defined later. IftT � tR, the
carrier thermalization is complete before the recombination starts. Otherwise, the thermal
equilibrium of carriers cannot be established. These cases are termed by PS as ‘A-trapping’
and ‘B-trapping’, respectively.

The MT equations can be simplified in two limiting cases. The non-equilibrium
approach is based on the assumption that the majority of carriers occupy traps of depth
E > E0(t), whereas the quasi-equilibrium approach corresponds to the opposite situation.
Their adequacy depends on the stage of carrier thermalization and, for the dispersive
transport regime (tD � t � tT ), on the form of the trap distribution. A rough criterion may
be formulated in terms of an energy-dependent dispersion parameter [16]:

α(E) = −kT d lnNt(E)

dE
(13)

characterizing the decay rate of the trap density. The non-equilibrium approximation gives
good results whenα(E) < 0.5, and the quasi-equilibrium approximation gives good results
when α(E) > 0.5 (E0

t 6 E 6 Et ). In the following subsections, we shall present the
formulae for the PC and PA obtained in the frameworks of the two approaches. Some
additional approximations, under which the above-mentioned formulae are derived, are
discussed in appendices A and B.

3.2. The non-equilibrium case

In the case considered, equation (8), which describes the kinetics of the carrier
trapping/detrapping, may be approximated [12, 13] by

1nt(t) ≈ 8(t)
∫ t

0
1n(t ′) dt ′ (14)

which leads to the equation

d

dt

[
1nt(t)

8(t)

]
≈ 1n(t). (15)

A plot of the function8(t) for the exponential trap distribution (10) is shown in figure 1.
Below, we shall give the solutions of equations (4) and (15) for various characteristic time
intervals.
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Figure 1. The function8(t) calculated from the exact formula (9) (points) and the approximate
formulae (16), (24) and (34) (dashed lines) for the exponential trap distribution.n0 = 10−10,
br = 20. The quantities on the plot and in the caption are dimensionless (cf. section 4.1).

3.2.1. Interval I.t � tD. In this time region, carrier emission from the traps is negligible,
and thus only the processes of carrier trapping and recombination are significant. The
function8(t), defined by equation (9), does not depend on time (cf. figure 1), and can be
approximated by

8(t) ≈ bt
∫ Ef 0

E0
t

Nt (E) dE = 1/τ 0
t . (16)

Here,τ 0
t is the mean carrier trapping time in the presence of the bias illumination.τ 0

t is an
increasing function of the bias intensity, due to the corresponding shift of the quasi-Fermi
level Ef 0.

Inserting the above expression into equation (15), one obtains
d1nt(t)

dt
≈ 1n(t)

τ 0
t

. (17)

Equations (4) and (17) can be integrated exactly. However, fort � tT , n01nt(t) �
n0
t |1n(t)| (see appendix A). Then, the second term on the RHS of (4) may be omitted:

d

dt
[1n(t)+1nt(t)] ≈ −brn0

t 1n(t). (18)

The solution of equations (17) and (18) is

1n(t) = 1n(0) exp(−t/τe) (19)

1nt(t) = 1n(0) τe
τ 0
t

[
1− exp(−t/τe)

]
. (20)

The timeτe determined from

1/τe = 1/τ 0
t + brn0

t (21)

is the mean lifetime of a free carrier which depends on the trapping and recombination rates
of the carriers. According to the above equations, the PC decays exponentially with time,
whereas the PA increases monotonically.
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3.2.2. Interval II.tD � t � tT . The time interval considered corresponds to the dispersive
transport regime. Equation (9) thus simplifies to the form

8(t) ≈ bt
∫ Ef 0

E0(t)

Nt (E) dE (22)

which is similar to the form without optical bias [12, 13]. The only difference is that the
upper integration limit now equalsEf 0, because of the saturation of deeper traps.

For the exponential trap distribution and relatively low bias intensity, whenEf 0 may
be replaced by infinity, this formula yields (cf. figure 1)

8(t) ≈ α

τt
(1.8νt)−α α < 1. (23)

Here,α = T/Tc is the dispersion parameter, andτt = 1/btNtot is the mean carrier trapping
time with no optical bias.

The set of equations (4) and (15) can easily be solved subject to the conditions
|d1n(t)/dt | � |d1nt(t)/dt | and n01nt(t) � n0

t |1n(t)|. As estimated in appendix A,
these inequalities hold fort � tD and t � tT , respectively. In this case, equation (4)
reduces to

d1nt(t)

dt
≈ −brn0

t 1n(t). (24)

The solution of equations (15) and (24) is as follows:

1n(t) = 1n(0) d

dt

[
1

8(t)+ brn0
t

]
(25)

1nt(t) = 1n(0) 8(t)

8(t)+ brn0
t

. (26)

The above formulae simplify in two time intervals. One can define the onsettR of
carrier recombination by the implicit equation

8(tR) = brn0
t . (27)

Since the function8(t) decreases monotonically with time, fort � tR one gets

1n(t) ≈ 1n(0) d

dt

[
1

8(t)

]
(28)

1nt(t) ≈ 1n(0). (29)

On the other hand, ift � tR, one obtains

1n(t) ≈ 1n(0)

(brn
0
t )

2

[
−d8(t)

dt

]
(30)

1nt(t) ≈ 1n(0)

brn
0
t

8(t). (31)

The formulae given are similar to those determining the current intensity in a time-of-flight
experiment [12, 13]. Equations (28) and (29) describe progressive carrier thermalization
with negligible recombination. In this case the optical bias influences the PC transient only
via the position of the quasi-Fermi level in the forbidden gap (cf. equation (22)). Equations
(30) and (31) correspond to carrier emission from the traps and the subsequent carrier
recombination, without significant retrapping.
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In the particular case of exponential trap distribution, when8(t) is given by equation
(23), from equation (27) one obtains

tR ≈ 1

ν(τtbrn
0
t )

1/α
. (32)

Here, some numerical coefficients of the order of unity were omitted. According to equations
(28), (30) and (31), the corresponding PC and PA transients are power functions of time:
1n(t) ∝ t−(1−α) for t � tR; 1n(t) ∝ t−(1+α) and1nt(t) ∝ t−α for t � tR.

3.2.3. Interval III. t � tT . In this time region the assumption of non-equilibrium carrier
distribution is justified only iftR � tT (the B-trapping case of PS). As results from equation
(9), the ultimate decay of8(t) is given by

8(t) ≈ exp(−btn0t)

n0

∫ Et

E0(t)

Nt (E)

τr(E)
dE. (33)

Since the above integral varies slowly with time, the final decay of8(t) is approximately
exponential with a time constant 1/btn0 = τr(Ef 0). Thus, for t > tT the carriers are
emitted mainly from the traps in the vicinity of the quasi-Fermi level. For the exponential
distribution of traps (10), from equation (33) one gets

8(t) ≈ ανNtot

(1+ α)n0
(1.8νt)−(1+α) exp(−btn0t) α < 1 (34)

(cf. figure 1).
When solving equations (4) and (15), the assumption that|d1n(t)/dt | � |d1nt(t)/dt |

may be used again, but both terms on the RHS of (4) must be retained. The resulting
solution has then an involved form (see appendix A). According to this, the final decay of
the PC and PA is given by

1n(t) ≈ c1n(0)

(brn
0
t )

2

[
−d8(t)

dt
− brn08(t)

]
(35)

1nt(t) ≈ c1n(0)

brn
0
t

8(t) (36)

where e−1 < c < 1. For exponential trap distribution, the long-time PC asymptotics is
described by1n(t),1nt (t) ∝ t−(1+α) exp(−btn0t).

It is seen from equations (30) and (35) that the sign of the PC transient might change
from ‘+’ to ‘−’ before the ultimate PC behaviour is established. One can give an
approximate criterion for the existence of this effect. Inserting the asymptotic formula
8(t) ∝ exp(−btn0t) into (35), one obtains the equation

1n(t) ∝ (bt − br) exp(−btn0t) (37)

with a positive proportionality constant. This implies that the PC sign reversal occurs if
br > bt .

3.3. The quasi-equilibrium case

In the case of a quasi-equilibrium distribution of trapped carriers, equation (8) may be
approximated by [16]

1nt(t) ≈
[∫ t

0
8(t ′) dt ′

]
1n(t). (38)
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Figure 2. The function2(t) calculated from the exact formula (41) (points) and the approximate
formulae (47) and (48) (solid and dashed line, respectively).n0 = 10−10, br = 20. The
quantities on the plot and in the caption are dimensionless (cf. section 4.1).

Introducing the function2(t) which obeys the relation

2−1(t) = 1+
∫ t

0
8(t ′) dt (39)

equation (38) may be rewritten as

1nt(t) ≈
[
2−1(t)− 1

]
1n(t). (40)

It is seen that the function2(t) is equal to the ratio of the free-carrier density to the total
carrier density,2(t) = 1n(t)/[1n(t)+1nt(t)]. Inserting the function8(t) defined by (9)
into equation (39), one obtains

2−1(t) = 1+ bt
∫ Et

E0
t

Nt (E)τr(E)[
1+ btn0τr(E)

]2

{
1− exp

[− (btn0+ τ−1
r (E))t

]}
dE. (41)

A plot of the function2(t) for the exponential distribution of traps given by (10) is presented
in figure 2.

Below, the solutions of equations (4) and (40) are given for the time intervals II and
III, defined in the preceding section (in interval I the quasi-equilibrium approach cannot
be valid). It is assumed that2(t) � 1, which is usually the case fort � tD. Only the
expressions determining the free-carrier density are presented. Those for the trapped-carrier
density may be obtained from the relationship

1nt(t) ≈ 1n(t)/2(t) (42)

which results from equation (40).

3.3.1. Interval II.tD � t � tT . In the time interval considered, equation (41) for2(t)
may be approximated by

2−1(t) ≈ bt
∫ E0(t)

E0
t

Nt (E)τr(E) dE. (43)

The set of equations (4) and (40) can be integrated without further approximations.
However, fort � tT the second term on the RHS of equation (4) may be dropped again
(cf. appendix B). The solution of the resulting set of equations (18) and (40) is

1n(t) = 1n(0)2(t)exp

[
−brn0

t

∫ t

0
2(t ′) dt ′

]
. (44)
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The exponential factor in this formula describes the influence of carrier recombination.
Thus, the carrier recombination onsettR is now determined by∫ tR

0
2(t ′) dt ′ = 1/brn

0
t . (45)

Equation (44) is valid only fort < tR, since for longer times the quasi-equilibrium approach
is inadequate. Instead, equation (30) from the previous subsection must be used. For the
time t � tR, when the carrier recombination is negligible, from equation (44) one gets

1n(t) ≈ 1n(0)2(t). (46)

The PC decay is then due solely to carrier thermalization. One can notice that in the
approximation considered the function2(t) and the PC fort � tR do not depend on the
bias intensity. An analogous formula was obtained for the initial current intensity in the
time-of-flight regime [16].

For the exponential trap distribution (10), the function2(t) is approximately given,
according to equation (43), by

2(t) ≈ (1− α)τtν
α

(1.8νt)−(1−α) α < 1 (47)

(cf. figure 2). From the above equations one then obtains essentially the same results as
in the previous subsection. Equation (45) again yields formula (32) for the recombination
onsettR (except for some multiplicative coefficients). Also, equation (46) gives the same
time dependence of the PC,1n(t) ∝ t−(1−α) for t � tR, as equation (28).

3.3.2. Interval III. t � tT . In the time region considered, the approximate thermal
equilibrium between the free and trapped carriers may exist only iftR � tT (the A-trapping
case of PS). According to equation (41), the function2(t) does not depend on time (cf. figure
2). Denoting the limiting value of this function by20, one gets

20−1 ≈ bt
∫ Ef 0

E0
t

Nt (E)τr(E) dE. (48)

From the solution of equations (4) and (40) given in appendix B it follows that the PC
decays exponentially for large times:

1n(t) = 1n(0)20 exp(−2brn
0t). (49)

The carrier recombination onset is therefore given bytR = 1/2brn0. For tT � t � tR the
PC has a constant value,1n(t) ≈ 1n(0)20.

All of the analytical results obtained for the interval II for the exponential trap
distribution as well as for the interval III may be compared with the corresponding results of
PS (region I was not considered earlier). In general, there is complete qualitative agreement
between the given formulae. The small discrepancies concern only the numerical values of
some coefficients and the final asymptotics of the PC and PA decay in the B-trapping case,
which according to PS should be purely exponential.

4. Numerical results

4.1. The numerical method

In order to verify the accuracy of our approximate formulae derived in the preceding section,
we carried out numerical calculations of the PC and PA for the exponential trap distribution
given by (10).
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To reduce the number of parameters, the MT equations (1)–(3) were rewritten in
dimensionless form. The following quantities were selected as the basic units:Ntot : the
unit of the trap and carrier densities; 1/CtNtot : the time unit;kT : the energy unit. The
continuous trap distribution (10) was approximated by the set ofL = 150 equidistant discrete
levels, separated by the energy1E = kT . The resulting set of stiff differential equations
has been solved using Gear’s algorithm [18]. A sparse form of the Jacobian of MT equations
allowed us to optimize the original Gear procedure. Special subroutines were developed for
the storage of non-zero Jacobian elements and for the solution of the corresponding linear
equations. These modifications made the computing process less memory consuming and
much more efficient.

The intensity of the bias illumination was characterized by the value of the stationary
(dimensionless) densityn0/Ntot of free carriers. Although the numerical results given below
refer to rather low values ofn0/Ntot , it was established that the PC and PA transients do
not change appreciably up ton0/Ntot ≈ 10−3. The steady-state densities of the carriers,
captured at each energy level, were computed using the discretized formula (7).

4.2. Comparison of the analytical and numerical results

In the figures below, the results of the analytical and numerical calculations of the PC and
PA transients are compared. The analytical and numerical curves are indicated by points
and solid lines, respectively. All of the quantities in the figures and in their captions are
dimensionless. For simplicity, we have not introduced new symbols for these quantities.

Figure 3. PC transients evaluated analytically (solid lines) and numerically (points) for
exponential trap distribution at different bias illuminations. The limitstD , tR and tT of the
corresponding time intervals are marked by the arrows. The calculations were carried out for
a high value of the recombination coefficient,br = 20, and for a relatively high value of the
dispersion parameterα = T/Tc.

Each figure presents the results corresponding to three different intensities of bias
illumination, i.e. to different positions of the quasi-Fermi level below the mobility edge.
The individual figures differ in, among other factors, the value of the dispersion parameter
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Figure 4. PC transients for a case similar to that represented in figure 3. The dispersion
parameterα has an intermediate value; the remaining parameters are identical to those of figure 3.

Figure 5. PC transients for a case similar to that represented in figure 3. The dispersion
parameterα has a relatively small value; the remaining parameters are identical to those of
figure 3.

α = T/Tc, which characterizes the decay rate of the exponential trap distribution. In all of
the figures the PC or PA in the initial time interval,t < tD, were computed using equations
(19) or (20), respectively.

Figures 3–5 show the PC transients obtained for a relatively high value of the
recombination coefficient (case B of PS,tR � tT ). For t > tD the PC were calculated



10392 P Grygiel and W Tomaszewicz

Figure 6. PA transients corresponding to the same case as for the PC in figure 5.

Figure 7. PC transients evaluated analytically and numerically for exponential trap distribution
at different bias illuminations. The calculations were carried out for a low value of the
recombination coefficient,br = 10−8, and for a relatively small value of the dispersion
parameterα.

from equations (A10) and (A1). The exception are the PC shown in figure 3, where for the
time intervaltD < t < tR equation (B1) was used. This was done because forα > 0.5 the
quasi-equilibrium formulae should give better accuracy compared to the non-equilibrium
ones (cf. section 3.1). All of the features of the PC discussed in the preceding section can
be recognized on the plots. In the initial time interval,t < tD, the PC decays exponentially.
For larger times, the PC transient changes gradually fromt−(1−α) to t−(1+α) in the vicinity
of the timetR, which marks the onset of recombination. Close to the thermalization timetT
the PC becomes negative and its final decay is nearly exponential. Figure 6 presents the PA
transients for identical values of the parameters as for the PC represented in figure 5. For
t > tD the transients were plotted using equations (A10) and (A2). After the initial increase,
the PA behaves ast−α. The final decay of the PA is exponential, and is characterized by
the same rate constant as that of the PC.

Figures 7–9 present the PC transients calculated for a low value of the recombination
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Figure 8. PC transients for a case similar to that represented in figure 7. The dispersion
parameterα has an intermediate value; the other parameters are identical to those of figure 7.

Figure 9. PC transients for a case similar to that represented in figure 7. The dispersion
parameterα has a relatively high value; the other parameters are identical to those of figure 7.

coefficient (case A of PS,tR � tT ), and the same bias intensities as for figures 3–6. In the
time regiont > tD the PC were computed using equation (B1), except the PC in figure 7,
which was calculated fortD < t < tT from equations (A10) and (A1). The character of the
PC differs significantly from those of the previous ones. Fort > tD the PC decays according
to the expressiont−(1−α) up to the timetT . Then the PC transient levels off to a constant
value, and this is followed by a final exponential decay near totR. Figure 10 illustrates the
PA transients, computed from equations (B1) and (40) with parameters identical to those of
figure 9. Over the time intervaltD � t � tR the PA is essentially constant and for longer
times it exhibits the same exponential decay as the PC.

All of the above figures illustrate the influence of the optical bias intensity on the PC
and PA. In particular, the decrease of the values oftR and tT with increasing illumination
level is clearly seen.

In general, the PC and PA time dependencies, calculated analytically and numerically,
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Figure 10. PA transients corresponding to the same case as for the PC in figure 9.

remain in good agreement. The more significant discrepancies concern only the value of
the recombination onset timetR in the A-trapping case (cf. figures 9 and 10). The reason
for these divergences is not clear to us. One can notice that the accuracy of the non-
equilibrium formulae somewhat ameliorates with decreasingα-parameter. The accuracy of
the quasi-equilibrium formulae exhibits the opposite trend. Summarizing, the approximate
expressions derived are found to describe all of the features of the PC and PA in the presence
of bias illumination with a rather satisfactory accuracy.

5. Conclusions

The analytical and numerical treatment of the PC and PA in the presence of optical bias,
given in sections 3 and 4, enables us to formulate the following conclusions. The forms
of the PC and PA transients for the initial time region (I) and, in a first approximation,
for the final time interval (III), are independent of the trap distribution in the energy gap.
In contrast, for the dispersive transport regime (II), the shape of the PC and PA curves
depends on the energetic trap distribution as well as on the bias intensity. In this time
region, the non-equilibrium and quasi-equilibrium approaches give consistent results, at
least for exponential trap distribution. Combining these approaches, if necessary, one can
describe all of the features of PC and PA transients with good accuracy. The results obtained
are consistent with those obtained by other authors, particularly PS.

The methods of determination of the MT model parameters from the measured PC
and PA were considered in earlier papers. Therefore, we shall confine ourselves here to
emphasizing certain points. According to equations (19)–(21), the investigation of PC or
PA transients in the initial interval makes it possible to calculate the mean lifetimeτe of
free carriers. On the other hand, the analysis of the PC and/or PA in the dispersive transport
region enables us in principle to determine the shape of the trap distribution in the energy
gap. The corresponding formulae, given in section 3, seem to be suitable for this purpose
because of their simplicity. Using these formulae, one can determine the form of the function
8(t) or 2(t), which is directly related to the energetic trap profile, according to (22) or
(43). A particularly simple formula results from equations (30) and (22), corresponding to
the B-trapping case:

1n(t) ∝ Nt [E0(t)]/t tR � t � tT . (50)
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The PC is here proportional to the trap density at the energy levelE0(t), divided by the
time t . An analogous formula was obtained in the case of PC decay from the steady state
under strong recombination [19]. The above-mentioned analysis can be carried out for
experimental data corresponding to different intensities of bias illumination. Therefore, the
consistency of the PC and PA interpretation in terms of the MT model considered may be
verified.

This paper is concerned mainly with the case of bimolecular carrier recombination.
However, essentially the same results are valid for the monomolecular recombination case
up to the thermalization timetT (cf. appendix C). This implies that the above conclusions
apply also to monomolecular carrier recombination.
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Appendix A. The non-equilibrium approach

The set of equations (4) and (15) does not seem to have an exact solution. Therefore, the
approximations made in section 3.2 may be justified only in semi-consistent way. We shall
restrict ourselves to discussing these approximations for the time interval II. Some of the
solutions obtained apply also to the final time interval III.

A1. Interval II. tD � t � tT

From equation (15) it is apparent that the carrier densities can be expressed as

1n(t) = 1n(0) du(t)

dt
(A1)

1nt(t) = 1n(0)8(t)u(t). (A2)

The solution of the approximate equations (24) and (15) is then given by

u(t) = 1

8(t)+ brn0
t

. (A3)

Let us investigate first the simplifying assumption|d1n(t)/dt | � |d1nt(t)/dt |. For
this purpose, equation (24) may be replaced by

d

dt
[1n(t)+1nt(t)] ≈ −brn0

t 1n(t). (A4)

The solution of equations (A4) and (15) is

u(t) =
∫ t

0
exp

{
−
∫ t

t ′

[
8(t ′′)+ brn0

t

]
dt ′′
}

dt ′. (A5)

The above expression reduces to (A3) subject to the condition∫ t

0

[
8(t ′)+ brn0

t

]
dt ′ � 1. (A6)
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This may be proved as follows:

u(t) =
∫ t

0

1

8(t ′)+ brn0
t

d

dt ′
exp

{
−
∫ t

t ′

[
8(t ′′)+ brn0

t

]
dt ′′
}

dt ′

≈ 1

8(t)+ brn0
t

∫ t

0

d

dt ′
exp

{
−
∫ t

t ′

[
8(t ′′)+ brn0

t

]
dt ′′
}

dt ′

≈ 1

8(t)+ brn0
t

. (A7)

Taking into account relationship (39), inequality (A6) may be rewritten as

1

2(t)
− 1+ brn0

t t � 1. (A8)

Since usually2(t) � 1 for t � tD, one can state that the inequality|d1n(t)/dt | �
|d1nt(t)/dt | holds for t � min(tD, 1/brn0

t ).
Let us consider now the assumptionn01nt(t) � n0

t |1n(t)|. To obtain the corres-
ponding criterion, equation (24) may be replaced by

d1nt(t)

dt
≈ −br

[
n0
t 1n(t)+ n01nt(t)

]
. (A9)

The solution of equations (A9) and (15) has the form

u(t) = 1

8(t)+ brn0
t

exp

[
−
∫ t

0

brn
08(t ′)

8(t ′)+ brn0
t

dt ′
]
. (A10)

This expression yields (A3) provided that∫ t

0

brn
08(t ′)

8(t ′)+ brn0
t

dt ′ � 1. (A11)

Taking into account equation (39), the value of the above integral may be estimated as
follows: ∫ t

0

brn
08(t ′)

8(t ′)+ brn0
t

dt ′ < min

{
n0

n0
t

[
1

2(t)
− 1

]
, brn

0t

}
. (A12)

Making use of equation (7), one obtains the relationship

nt
0 =

(
1

20
− 1

)
n0 (A13)

which is analogous to (40), with20 given by equation (48). In the following, it will be
assumed that2(t),20� 1. Then

n0 ≈ 20n0
t (A14)∫ t

0

brn
08(t ′)

8(t ′)+ brn0
t

dt ′ < min

[
20

2(t)
, brn

0t

]
. (A15)

In principle, 2(t) � 20 for t � tT . One can therefore conclude that the inequality
n01nt(t)� n0

t |1n(t)| is valid for t � max(tT , 1/brn0).
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A2. Interval III. t � tT

In this time interval, solution (A10) is also valid, subject to|d1n(t)/dt | � |d1nt(t)/dt |.
For sufficiently large times the integral in equation (A10) tends to a constant value:∫ ∞

0

brn
08(t ′)

8(t ′)+ brn0
t

dt ′ = c0 < 1 (A16)

(cf. equation (A15)). Then, from equations (A10) and (A16), together with (A1) and (A2),
one obtains formulae (35) and (36) withc = exp(−c0).

Appendix B. The quasi-equilibrium approach

The exact solution of equations (4) and (40) has the following form:

1n(t) = 1n(0)2(t)exp

{
−br

[
n0
t

∫ t

0
2(t ′) dt ′ + n0t

]}
. (B1)

We shall assume here, as before, that2(t),20� 1.

B1. Interval II. tD � t � tT

Making use of (A14), one can notice that the second term in the exponent is negligible if
2(t) � 20. From (B1) one then gets formula (44). This shows again thatn01nt(t) �
n0
t |1n(t)| for t � tT .

B2. Interval III. t � tT

For t � tT the integral in (B1) may be approximated by∫ t

0
2(t ′) dt ′ ≈ 20t. (B2)

Then, from (B1) and (A14) one obtains formula (49).

Appendix C. Monomolecular recombination

The kinetics of monomolecular recombination (MR) of the carriers is described by

d

dt
[1n(t)+1nt(t)] = −1n(t)

τR
(C1)

whereτR is the mean recombination time. This equation has the same form as equation (4)
for bimolecular recombination (BR), in which the productbrn0

t is replaced by 1/τR and the
second term on the RHS, describing the recombination of trapped carriers, is omitted.

As indicated before, in the case of BR the latter term in equation (4) is negligible for
time t � tT . This implies that the formulae relating to MR may be obtained from those
corresponding to BR fort � tT , given in section 3, by replacingbrn0

t by 1/τR. The
formulae obtained for the dispersive transport region apply also in the final time interval,
t � tT . In particular, fortR � tT (the B-trapping case of PS) the ultimate PC and PA decay
are described by the equations

1n(t) ≈ 1n(0) τ 2
R

[
−d8(t)

dt

]
(C2)

1nt(t) ≈ 1n(0) τR8(t) (C3)
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which follow from (30) and (31). In this case the PC sign reversal does not occur. For
the exponential trap distribution from (34), (C2) and (C3), one gets essentially the same
expressions as for the BR:1n(t),1nt (t) ∝ t−(1+α) exp(−btn0t). For tT � tR (the A-
trapping case of PS) the final decay of the PC is given by the equation

1n(t) = 1n(0)20 exp(−brn0t) (C4)

which results from (44), (A14) and (B2). This equation has almost the same form as
equation (49), which is for BR.

In conclusion, the PC and PA transients for MR and BR should have identical forms in
the time intervalt � tT and almost the same ultimate behaviours. The dependence of the
PC and PA on the bias intensity would be, however, different. This is because the rate of
MR of the free carriers, proportional to 1/τR, is independent on the optical bias, unlike the
BR rate. The above-mentioned results concerning the MR are consistent with those from
the paper by PS. The formulae obtained were also verified numerically in a way similar to
that described in section 4.
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